За регение-подписка, , лайк и 20 . среди первых 500 натуральных чисел нашли три различных числа, нод которых является наибольшим из всех возможных. определите сумму цифр наибольшего из этих трёх чисел
Пусть три различных числа, НОД которых является наибольшим из всех возможных будут x, y, z и x < y < z (по условию они различные, так что можем упорядочить). Обозначим n=НОД(x; y; z). Тогда эти числа представляются в виде
x=n·a, y=n·b, z=n·c
где a, b, c такие, что НОД(a; b; c)=1.
Так как n должен быть наибольшим из всех возможных, то числа a, b и c наименьшие среди возможных множителей. Но такими числами могут быть 1, 2 и 3, и что для них НОД(1; 2; 3)=1.
Наибольшее из чисел z=n·3 не больше 500 и делится на 3. Такое наибольшее число, меньшее 500 - это 498. Тогда из 498=n·3 находим, что n=166 и x=166, y=332.
Вычислим сумму цифр наибольшего из этих трёх чисел
21
Пошаговое объяснение:
Пусть три различных числа, НОД которых является наибольшим из всех возможных будут x, y, z и x < y < z (по условию они различные, так что можем упорядочить). Обозначим n=НОД(x; y; z). Тогда эти числа представляются в виде
x=n·a, y=n·b, z=n·c
где a, b, c такие, что НОД(a; b; c)=1.
Так как n должен быть наибольшим из всех возможных, то числа a, b и c наименьшие среди возможных множителей. Но такими числами могут быть 1, 2 и 3, и что для них НОД(1; 2; 3)=1.
Наибольшее из чисел z=n·3 не больше 500 и делится на 3. Такое наибольшее число, меньшее 500 - это 498. Тогда из 498=n·3 находим, что n=166 и x=166, y=332.
Вычислим сумму цифр наибольшего из этих трёх чисел
4+9+8=21