Y" + y + 5y = 0 дифферациональное уравнение

пукимэн228 пукимэн228    2   30.05.2023 18:31    0

Ответы
malinovskaya10102006 malinovskaya10102006  30.05.2023 18:32

Відповідь:Дане диференціальне рівняння другого порядку має вигляд:

y" + y + 5y = 0

Щоб знайти розв'язок цього рівняння, спробуємо знайти характеристичне рівняння його відповідного однорідного рівняння.

Характеристичне рівняння має вигляд:

r^2 + r + 5 = 0

Ми можемо вирішити це квадратне рівняння, використовуючи дискримінант:

D = b^2 - 4ac = 1^2 - 4(1)(5) = 1 - 20 = -19

Оскільки дискримінант від'ємний, це означає, що характеристичне рівняння має комплексні корені.

Розв'язок комплексних коренів можна виразити в такому вигляді:

r = (-b ± √D) / (2a)

= (-1 ± √(-19)) / (2)

Таким чином, комплексні корені:

r1 = -1/2 + (i√19)/2

r2 = -1/2 - (i√19)/2

Оскільки характеристичне рівняння має комплексні корені, розв'язок однорідного рівняння буде мати вигляд:

y(t) = c1 * e^(αt) * cos(βt) + c2 * e^(αt) * sin(βt)

де α = -1/2, β = √19/2, c1 і c2 - це довільні константи.

Отже, розв'язок диференціального рівняння y" + y + 5y = 0 має вигляд:

y(t) = c1 * e^(-t/2) * cos((√19/2)t) + c2 * e^(-t/2) * sin((√19/2)t)

Це загальний розв'язок диференціального рівняння. Значення констант c1 і c2 можна визначити з умови початкових умов або додаткових обмежень, якщо такі надаються у задачі.

ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Математика