Пошаговое объяснение:
область определения x(x-5)²(2-x)≥0
решаем x(x-5)²(2-x)=0 ⇒ х₁ = 0; х₂=2; х₃ = 5
получили 4 интервала. смотрим знак функции на каждом интервале
(-∞;0) y(-1)=-1*(-6)²(1+2) < 0 интервал не подходит
[0; 2] y(1) = 1(-4)²(-1+2) > 0; y(0)=0; y(2)=0 интервал подходит
(2; 5] y(3)=3(-2)²(-1) <0; y(5) =0; интервал не подходит, точка х = 5 подходит
(5; +∞) y(6) = 6*1²*(-4) < 0 интервал не подходит
ответ х ∈ [0; 2] ∪ [5]
или 0≤х≤5; х=5
Пошаговое объяснение:
область определения x(x-5)²(2-x)≥0
решаем x(x-5)²(2-x)=0 ⇒ х₁ = 0; х₂=2; х₃ = 5
получили 4 интервала. смотрим знак функции на каждом интервале
(-∞;0) y(-1)=-1*(-6)²(1+2) < 0 интервал не подходит
[0; 2] y(1) = 1(-4)²(-1+2) > 0; y(0)=0; y(2)=0 интервал подходит
(2; 5] y(3)=3(-2)²(-1) <0; y(5) =0; интервал не подходит, точка х = 5 подходит
(5; +∞) y(6) = 6*1²*(-4) < 0 интервал не подходит
ответ х ∈ [0; 2] ∪ [5]
или 0≤х≤5; х=5