∫∫xy^3dxdy d: y^2=1-x, x ⩾0

As337 As337    1   28.03.2020 00:38    0

Ответы
Unicorn7 Unicorn7  12.10.2020 07:41

ответ: 0.

Пошаговое объяснение:

\iint {xy^3dxdy}=\int\limits^1_0 dx \int\limits^{\sqrt{1-x} }_{-\sqrt{1-x} }{xy^3\, dy}=\int\limits^1_0 xdx (\frac{y^4}{4} )\bigg|\limits^{\sqrt{1-x} }_{-\sqrt{1-x}}=\int\limits^1_0 xdx (\frac{(1-x)^2-(1-x)^2}{4} )=\int\limits^1_0 0 \, dx=0


∫∫xy^3dxdy d: y^2=1-x, x ⩾0
ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Математика