Вычислите s фигуры ограниченной графиками функций y=x(в степени 2)+1 y=0; x=0; x=2

Сергей12318 Сергей12318    2   29.07.2019 08:10    0

Ответы
Messi294 Messi294  31.07.2020 22:12
Фигуру построите сами, 
Площадь найдем по формуле
\int\limits^a_b {f(x)} \, dx ,\\gde:f(x)=x^2+1,a=0,b=2\\ \int\limits^0_2( {x^2+1}) \, dx =\frac{x^3}{3}+x|^0_2=\frac{0^3}{3}+0-\frac{2^3}{3}+2=-\frac{8}{3}-2=-\frac{8}{3}-\frac{6}{3}=\\\\=\frac{-8-6}{3}=\frac{-14}{3}=-4\frac{2}{3}
ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Математика