где интеграл берётся по контуру, состоящему из верхней полуокружности и отрезка [-R, R], обходимому в положительном направлении.
С одной стороны, этот интеграл можно представить в виде суммы интегралов по дуге и отрезку, притом в силу леммы Жордана интеграл по дуге стремится к нулю, так как
С другой стороны, этот интеграл можно взять при вычетов. Под интегралом стоит мероморфная функция, имеющая простые полюсы в корнях 4-й степени из -1. В контур интегрирования попадают два из них, и . Значения вычета функции f(z) / g(z) в простом полюсе z=z0, если f(z) не имеет особенностей в точке z0, а g(z) дифференцируема, вычисляются по формуле f(z0) / g'(z0).
где интеграл берётся по контуру, состоящему из верхней полуокружности и отрезка [-R, R], обходимому в положительном направлении.
С одной стороны, этот интеграл можно представить в виде суммы интегралов по дуге и отрезку, притом в силу леммы Жордана интеграл по дуге стремится к нулю, так как
С другой стороны, этот интеграл можно взять при вычетов. Под интегралом стоит мероморфная функция, имеющая простые полюсы в корнях 4-й степени из -1. В контур интегрирования попадают два из них, и . Значения вычета функции f(z) / g(z) в простом полюсе z=z0, если f(z) не имеет особенностей в точке z0, а g(z) дифференцируема, вычисляются по формуле f(z0) / g'(z0).