Вычисли значение арифметического квадратного корня 1–√ (ответ запиши в виде десятичной дроби).

Владонмегалодон Владонмегалодон    2   30.11.2020 13:43    47

Ответы
Arttfggg Arttfggg  18.01.2024 18:29
Для решения этой задачи, нам необходимо вычислить арифметический квадратный корень из числа 1 - √.

Для начала, давайте разберемся в том, что такое арифметический квадратный корень. Арифметический квадратный корень из числа a - это такое число x, что x * x = a.

Теперь, применим это к нашей задаче. Нам нужно найти такое число x, которое умноженное на себя будет равно 1 - √.

Давайте представим √1 как число x. Тогда, x * x = 1 - x. Преобразуем это уравнение:

x * x + x - 1 = 0

Получившееся уравнение является квадратным уравнением вида ax^2 + bx + c = 0, где a = 1, b = 1 и c = -1.

Теперь перейдем к его решению. Мы можем использовать формулу дискриминанта, чтобы найти корни этого уравнения. Формула дискриминанта выглядит следующим образом:

D = b^2 - 4ac

D = (1)^2 - 4(1)(-1)
D = 1 + 4
D = 5

Так как дискриминант D больше нуля, у нас будут два реальных корня.

Теперь, найдем эти корни, используя формулу квадратного корня:

x = (-b ± √D) / (2a)

x1 = (-1 + √5) / (2*1) = (1 - √5) / 2
x2 = (-1 - √5) / (2*1) = (1 + √5) / 2

Мы нашли два значения x, которые являются корнями нашего исходного уравнения. Однако, нам нужно найти значение арифметического квадратного корня из 1 - √.

Очевидно, что арифметический квадратный корень из числа должен быть положительным, поэтому нас интересует только x1.

Таким образом, значение арифметического квадратного корня из числа 1 - √ равно (1 - √5) / 2. Это будет нашим итоговым ответом, записанным в виде десятичной дроби.
ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Математика