Вычисли следующие 3 члена геометрической прогрессии, если b1 = 7 и q= 5

zombi17 zombi17    2   07.04.2020 17:17    59

Ответы
matany57 matany57  26.12.2023 22:40
Для решения данной задачи, нам следует использовать формулу для нахождения общего члена геометрической прогрессии. Общий член геометрической прогрессии обозначается как bn и вычисляется следующим образом:

bn = b1 * q^(n-1)

где b1 - первый член прогрессии, q - знаменатель прогрессии, n - номер требуемого члена прогрессии.

В данной задаче у нас есть, что b1 = 7 и q = 5. Мы должны найти первые три члена прогрессии, то есть n = 1, 2 и 3.

Шаг 1: Найдем первый требуемый член прогрессии с помощью формулы:

b1 = 7 * 5^(1-1) = 7 * 5^0 = 7 * 1 = 7

Первый член прогрессии равен 7.

Шаг 2: Найдем второй требуемый член прогрессии:

b2 = 7 * 5^(2-1) = 7 * 5^1 = 7 * 5 = 35

Второй член прогрессии равен 35.

Шаг 3: Найдем третий требуемый член прогрессии:

b3 = 7 * 5^(3-1) = 7 * 5^2 = 7 * 25 = 175

Третий член прогрессии равен 175.

Итак, первые три члена геометрической прогрессии при b1 = 7 и q = 5 равны: 7, 35 и 175.
ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Математика