Вычисли площадь фигуры, ограниченной линиями: y=x^2−2x−13, y=2x+17−x^2
ответ:

волшебство5 волшебство5    3   13.11.2020 23:07    12

Ответы
sasavotchel sasavotchel  13.12.2020 23:13

ответ: Шаг 1: находим координаты х точек перечечения графиков y=x^2+1 и y=-x+3.

x^2+1 = -x+3; x^2+x-2 = 0; x1 = -2; x2 = 1.

Шаг 2: Находим определенный интеграл функции y = -x+3 в пределах от -2 до 1.

Первообразная этой функции будет Y = -1/2*x^2 + 3x + С

Подставляя пределы интегрирования получаем площадь под функцией S1 = -1/2 + 3 + 2 + 6 = 10,5.

Шаг 3: Находим определенный интеграл функции y = x^2+1 в пределах от -2 до 1.

Первообразная этой функции будет Y = 1/3*x^3 + x + С

Подставляя пределы интегрирования получаем площадь под функцией S2 = 1/3 + 1 + 8/3 +2 = 6.

Шаг 4: S = S1-S2; S = 10,5-6; S = 4,5.

Пошаговое объяснение:

ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Математика