Втреугольнике заданы вершина а(4,6), уравнения медианы x-5y+7=0 и высоты x+4y-2=0 выходящих из одной вершины. найти координаты остальных вершин, составить уравнения сторон, а также найти длину высоты треугольника.

VLAD43211 VLAD43211    3   01.10.2019 00:30    0

Ответы
KseniaFlowers KseniaFlowers  17.08.2020 01:58

Уравнение высоты: y=-\frac{1}{4}x+\frac{1}{2}, значит, уравнение противолежащей стороны будет выглядеть так: y=4x+b. Зная, что сторона проходит через точку (4; 6), найдём b: 6=4*4+b\Leftrightarrow b=-10. То есть y=4x-10\Leftrightarrow 4x-y-10=0 - уравнение одной из сторон.

Медиана пересекает сторону в точке (3; 2). Вычислим координаты второй вершины: \frac{x+4}{2}=3; \frac{y+6}{2}=2 \Leftrightarrow x=2; y=-2.

Найдём третью вершину - точку пересечения медианы и высоты. Они пересекаются в точке (-2; 1).

Найдём уравнения остальных сторон по уравнению прямой (y_{1}-y_{2})x+(x_{2}-x_{1})y+(x_{1}y_{2}-x_{2}y_{1})=0:

1) Сторона, соединяющая точки (4; 6) и (-2; 1): 5x-6y+16=0

2) Сторона, соединяющая точки (2; -2) и (-2; 1): 3x+4y+2=0

Найдём точку пересечения высоты и противолежащей стороны (выразим их через y и приравняем):

4x-10=\frac{1}{2}-\frac{x}{4} \\16x-40=2-x\\17x=42\\x=\frac{42}{17}\Rightarrow y=4x-10=4* \frac{42}{17}-10=-\frac{2}{17}

Длина высоты h=\sqrt{(x_{1}-x_{2})^2+(y_{1}-y_{2})^2}=\sqrt{(\frac{42}{17}+2)^2+(1+\frac{2}{17})^2}=\sqrt{\frac{76^2}{17^2}+\frac{19^2}{17^2}}=\\=\sqrt{\frac{6137}{17^2}}=\sqrt{\frac{19^2*17}{17^2}}=\frac{19\sqrt{17}}{17}

ответ: вершины: (4; 6), (2; -2), (-2; 1); уравнения сторон: 4x-y-10=0, 5x-6y+16=0, 3x+4y+2=0; длина высоты: \frac{19\sqrt{17}}{17}


Втреугольнике заданы вершина а(4,6), уравнения медианы x-5y+7=0 и высоты x+4y-2=0 выходящих из одной
ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Математика