Вравнобедренном треугольнике abc, ac=8см, угол b= 36; am- биссектриса угла bac. найдите am

НикаМарьям НикаМарьям    1   03.06.2019 18:40    0

Ответы
russalinagaras russalinagaras  01.10.2020 18:40
Ну для начала, рисуем равнобедренный треугольник АВС (с основанием АС), и отметим, что АС=8 см, угол В=36 градусов. ИЗ угла А проводим биссектрису АМ.
По свойству равнобедренного треугольника мы знаем, что в таком треугольнике углы при основании равны (а так как сумма всех углов любого треугольника равна 180 градусов), то 180-36=144 градуса - это два угла (Угол А и угол С),  144:2=72 градуса (т.е. угол А=72 и угол С=72). Теперь найдем угол МАС = угол А :2 =72:2=36 градусов. Рассмотрим треугольник АМС (в нем нам известны углы МАС=36 градусов, и МСА =72 градуса) и найдём оставшийся угол. Угол АМС=180-36-72=72 градуса. Замечаем ,что угол АМС = углу МСА =72 градуса => треугольник АМС равнобедренный т.к. углы при основании равны. Сторона АС=АМ ,а это значит что АМ=8см.
ответ: АМ=8см.
Р.S. объяснила, как смогла)))
ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Математика