Впрямоугольном треугольнике угол между высотой и медианой, проведёнными из вершины угла, равен 14 градусов. найдите меньший из двух острых углов треугольника. ответ дайте в градусах.

risj83risj risj83risj    1   28.07.2019 21:00    1

Ответы
bill3334 bill3334  25.09.2020 22:58

Вспомним, что в прямоугольном треугольнике медиана всегда  равна половине гипотенузы. 

Медиана делит этот треугольник на 2 равнобедренных треугольника, в которых равные в каждом стороны - медиана и половина гипотенузы. 
Против мéньшей стороны треугольника лежит его мéньший угол, и этот угол находится между гипотенузой и бóльшим катетом. 
Сумма острых углов треугольника, образованного высотой, половиной гипотенузы и большим из катетов, равна 90 градусов. Вычтя из этой суммы 14 градусов, мы найдем сумму равных углов равнобедренного треугольника с мéньшими углами при основании.  А один угол в нем равен:
(90-14):2=76:2=38 градусов.

ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Математика