Треугольник АВС. угол С = 90, угол А = 30, гипотенуза АВ = 20. Катет СВ равен 20/2 = 10, т.к. лежит против угла 30 град. Высота из прямого укла СК. Рассмотрим треугольник СКВ. Он прямоугольный, т.к. СК - это высота. Из треуг. АВС следует, угор В = 180-90-30=60 град. Значит угол КСВ = 180-90-60 = 30 град. Следовательно, катет КВ = половине гипотенузы СВ, т.к. лежит против угла 30 град. КВ = 10/2 = 5 АК = АВ-КВ = 20-5 = 15 ответ: Высота СК делит гипотенузу на отрезки 15 и 5 см.
Катет СВ равен 20/2 = 10, т.к. лежит против угла 30 град.
Высота из прямого укла СК.
Рассмотрим треугольник СКВ. Он прямоугольный, т.к. СК - это высота.
Из треуг. АВС следует, угор В = 180-90-30=60 град.
Значит угол КСВ = 180-90-60 = 30 град.
Следовательно, катет КВ = половине гипотенузы СВ, т.к. лежит против угла 30 град. КВ = 10/2 = 5
АК = АВ-КВ = 20-5 = 15
ответ: Высота СК делит гипотенузу на отрезки 15 и 5 см.