Эту задачу можно решить геометрическим
Для этого надо спроецировать отрезок АС на плоскость ASD.
Получим равнобедренный треугольник АКС, где АК и КС - высоты к ребру SD.
Находим высоту грани ASD из точки А.
Сначала определим апофему А (высота из точки S).
А = √(5² - (2/2)²) = √24 = 2√6.
Тогда АК = СК = (2*2√6)/5 = 4√6/5.
ответ получаем по теореме косинусов.
cos A = ((4√6/5)² + (2√2)² - (4√6/5)²)/(2*(4√6/5)*(2√2)) = 40/( 32√3) ≈ 0,721687836.
Угол А равен 0,764559 радиан или 43,805992 градуса.
Вот решение
Пошаговое объяснение:
Решение.
Введем систему координат так, как показано на рисунке:
O – начало координат.
Оси направлены по диагоналям квадрата основания и по высоте пирамиды.
1) SABCD – правильная пирамида □(⇒┴ ) ABCD – квадрат, AC BD,
AD2 = AO2 + AO2,
2AO2 = 4, AO2 = 2,
AO = √2, AO = OD = √2.
Угол между прямой AC и плоскостью ASD, значит, определим координаты следующих точек:
A(√2;0;0) , C(-√2;0;0) □(⇒┴ ) (AC) ⃗{-2√2;0;0}.
2) Для уравнения плоскости ASD найдём SO:
SO (ABC) □(⇒┴ ) SO AO = SO2 = AS2 – AO2,
SO = √(25-2)=√23 □(⇒┴ )
S(0;0; √23 ), A(√2;0;0) , D(0; √2;0).
полагая d = -√2 , получим: a = 1, b = 1, c = √2/√23=√46/23 .
Получим уравнение плоскости: x + y +√46/23 z - √2 = 0, □(⇒┴ ) n ⃗ {1;1;√46/23} .
|((AC) ⃗*n ⃗ ) |=|-2√2+0+0|=2√(2.)
|(AC) ⃗ |=√8=2√(2;)
|n ⃗ |=√(1+1+46/23)=√(2+2/23)=√(48/23)
sinα=√69/12,α=arcsin √69/12.
ответ: α=arcsin √69/12 .
Эту задачу можно решить геометрическим
Для этого надо спроецировать отрезок АС на плоскость ASD.
Получим равнобедренный треугольник АКС, где АК и КС - высоты к ребру SD.
Находим высоту грани ASD из точки А.
Сначала определим апофему А (высота из точки S).
А = √(5² - (2/2)²) = √24 = 2√6.
Тогда АК = СК = (2*2√6)/5 = 4√6/5.
ответ получаем по теореме косинусов.
cos A = ((4√6/5)² + (2√2)² - (4√6/5)²)/(2*(4√6/5)*(2√2)) = 40/( 32√3) ≈ 0,721687836.
Угол А равен 0,764559 радиан или 43,805992 градуса.
Вот решение
Пошаговое объяснение:
Решение.
Введем систему координат так, как показано на рисунке:
O – начало координат.
Оси направлены по диагоналям квадрата основания и по высоте пирамиды.
1) SABCD – правильная пирамида □(⇒┴ ) ABCD – квадрат, AC BD,
AD2 = AO2 + AO2,
2AO2 = 4, AO2 = 2,
AO = √2, AO = OD = √2.
Угол между прямой AC и плоскостью ASD, значит, определим координаты следующих точек:
A(√2;0;0) , C(-√2;0;0) □(⇒┴ ) (AC) ⃗{-2√2;0;0}.
2) Для уравнения плоскости ASD найдём SO:
SO (ABC) □(⇒┴ ) SO AO = SO2 = AS2 – AO2,
SO = √(25-2)=√23 □(⇒┴ )
S(0;0; √23 ), A(√2;0;0) , D(0; √2;0).
полагая d = -√2 , получим: a = 1, b = 1, c = √2/√23=√46/23 .
Получим уравнение плоскости: x + y +√46/23 z - √2 = 0, □(⇒┴ ) n ⃗ {1;1;√46/23} .
|((AC) ⃗*n ⃗ ) |=|-2√2+0+0|=2√(2.)
|(AC) ⃗ |=√8=2√(2;)
|n ⃗ |=√(1+1+46/23)=√(2+2/23)=√(48/23)
sinα=√69/12,α=arcsin √69/12.
ответ: α=arcsin √69/12 .