Вправильном тетраэдре abcd найдите угол между высотой тетраэдра dh и медианой bm боковой грани bcd.

Dacha07K Dacha07K    3   19.09.2019 10:30    8

Ответы
sulti1675gmailcom sulti1675gmailcom  08.10.2020 02:02
Пусть тетраэдр единичный.
Пусть В - начало координат.
ось X - BC
ось У - перпендикулярно X в сторону A
ось Z - вверх перпендикулярно АВС в сторону D

Высота правильного тетраэдра √(2/3) - она же длина НD
Вектор НD(0;0;√(2/3))
координаты точки М и вектора ВМ
ВМ(3/4;1/(4√3);1/√6) длина √(9/16+1/48+1/6)=√(36/48)
косинус угла между искомыми векторами равен
| HD * BM | / | НD | / | BM | = 1/3/√(2/3)/√(36/48)= √(8/36)
угол аrccos (√2/3)
ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Математика