Вершины треугольника авс имеют координаты : а(-1; 2; 3) в(1; 0; 4) с(3; -2; 1). найдите длину средней треугольника,параллельной стороне ав

Werbast Werbast    3   08.07.2019 14:40    17

Ответы
kaldyn007 kaldyn007  16.09.2020 17:12
Обозначим концы средней линии треугольника ABC, параллельной стороне AB, за MN. При этом M - середина стороны AC, а N - середина стороны BC.
Длина средней линии треугольника равна половине длины стороны треугольника, которой параллельна эта средняя линия.
Т.к. MN || AB, то |MN|=1/2|AB|.

AB²=(1-(-1))²+(0-2)²+(4-3)²=4+4+1=9=3²

Значит, длина стороны AB равна 3, а длина средней линии MN равна 3/2=1,5.

Это простое решение, в котором не нужны даже координаты точки C.
Можно решать сложно, определяя координаты точке M и N и вычисляя затем длину отрезка MN по координатам:

Координаты середины отрезка равны полусумме соответствующих координат концов отрезка.
Точка M (середина AC):
x=(-1+3)/2=1
y=(2+(-2))/2=0
z=(3+1)/2=2

M(1;0;2)

Точка N (середина BC):
x=(1+3)/2=2
y=(0+(-2))/2=-1
z=(4+1)/2=5/2

N(2;-1;5/2)

MN² = (2-1)²+(-1-0)²+((5/2)-2) = 1+1+1/4 = 9/4 = (3/2)²
|MN| = 3/2

ответ, разумеется, такой же: длина MN равна 1,5.
ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Математика