Велосипедист выехал с постоянной скоростью из города а в город в, расстояние между которыми равно 180 км. на следующий день он отправился обратно в а со скоростью на 5 км/ч больше прежней. по дороге он сделал остановку на 3 часа. в результате велосипедист затратил на обратный путь столько же времени, сколько на путь из а в в. найдите скорость велосипедиста на пути из а в в.
t = S/v = S/(v+5) + t₁
Далее приравниваем , подставляем значения, и решаем уравнение:
180/ v = 180/(v+5) + 3
(180-3v)/v = 180/(v+5)
180v=(180-3v)(v+5)
180v = 180v + 5*180 - 3v² - 15v
900 - 3v² - 15v = 0
-3v² - 15v + 900 = 0
Для удобства делим на 3 :
-v² - 5v + 300 = 0
D = (-5)² - 4*(-1)*300 = 1225 = 35²
v₁ = (5 + 35)/-2 = -20 (скорость отрицательной в нашем случае быть не может, значит корень не подходит)
v₂ = (5-35)/-2 = 15
ответ : 15 км/ч