Велосипедист ехал из одного города в другой. половину пути он проехал со скоростью v1 = 12 км/ч. далее половину оставшегося времени движения он ехал со скоростью v2 = 6 км/ч, а затем до конца шел пешком со скоростью v3 = 4 км/ч. определить среднюю скорость велосипедиста на всем пути. p.s. ответ должен быть ровно 7! никаких дробных чисел быть не может. из егэ.

маша2521 маша2521    2   17.03.2019 10:50    41

Ответы
Tadashimi2016 Tadashimi2016  25.05.2020 19:29
Дано:
v₁ = 12 км/час (скорость половины пути)
v₂ = 6 км/час (ск.первой половины  ост. времени)
v₃ = 4 км/час(ск. второй половины ост. времени)
Найти: vср.
Решение.
vср. = S/t  (всему расстоянию, деленному на все время движения)
S = 2(S/2) (половина пути со одной скоростью 12 км/час и половина со скоростями 6 и 4 км/час)
t = t₁ + 2t₂  (время первой половины пути t₁ и два равных отрезка времени t₂ второй половины пути)
t₁ = (S/2)/v₁ = (S/2)/12 = S/24
      Во второй половине пути:
S/2 = t₂v₂ + t₂v₃ = t₂(v₂ + v₃) = t₂(v₂+v₃) = t₂(6+4) = 10t₂
откуда t₂ = S/20
t = S/24 + 2S/20 = (2S+12S)/120 = 17S/120
vср = S/(17S/120) = 120/17≈ 7 (км/час)
ответ: 7 км/час
Примечание.  можно не вычислять дроби со скоростями, а решать в общем виде, а затем их подставить:
vср. = S/t
t = t₁ + 2t₂
t₁ = S/2v₁  
из S/2 = t₂(v₂+v₃) следует: 
t₂ = S/2(v₂+v₃) 
t = S/2v₁ + S/(v₂+v₃) = S(v₂+v₃+2v₁)/2v₁(v₂+v₃) 
vср.=  2v₁(v₂+v₃)/(2v₁+v₂+v₃) = 2*12(6+4)/(2*12+6+4) = 120/17 ≈ 7 км/час
ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Математика