Вчетырёхугольнике abcd угол bac=20*, угол bca=35*, угол bdc=40*, угол bda=70*. найти острый угол между диагоналями четырёхугольника.

lera1060 lera1060    3   30.09.2019 13:00    0

Ответы
Kirill0812 Kirill0812  09.10.2020 05:32

Решение

Пусть K — точка пересечения биссектрисы угла ADB с диагональю АС. Поскольку $ \angle$KDB = $ \angle$KCB = 35o, то точки K, B, C, D лежат на одной окружности. Поэтому

$\displaystyle \angle$BKC = $\displaystyle \angle$BDC = 40o, $\displaystyle \angle$ABK = $\displaystyle \angle$BKC - $\displaystyle \angle$BAC = 40o - 20o = 20o.

Тогда AK = BK и радиус окружности, описанной около треугольника AKD, равен радиусу первой окружности ( $ \angle$ADK = $ \angle$KDB = 35o). Поэтому

$\displaystyle \angle$CAD = $\displaystyle \angle$ACD = $\displaystyle {\frac{180^{\circ} - 110^{\circ}}{2}}$ = 35o.

Следовательно, угол между диагоналями равен

$\displaystyle \angle$BDC + $\displaystyle \angle$ACD = 40o + 35o = 75o.

 

ответ

75o.

ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Математика