В треугольнике АВС угол А =90˚, АВ=2 см, ВС=4см, О - точка, равноудаленная от сторон, М- середина ВС. Найдите а) угол АОВ, б) угол между прямыми АМ и ВО.

Татьяна45512 Татьяна45512    2   22.07.2020 19:17    4

Ответы
ProstOr1223 ProstOr1223  15.10.2020 15:29

АВ=2 см-  катет

ВС=4 см - гипотенуза

∠АСВ=30° ( катет против угла в 30 ° равен половине гипотенузы)

∠ АВС=60°  ( сумма острых углов прямоугольного треугольника равна 90°)

ОK=OP=OT

OK⊥AB

OP⊥AC

OT⊥BC

⇒  BO- биссектриса ∠ABC⇒  OBK=30°⇒∠OKB=60°

APOK - квадрат

∠АОK=45°

а) ∠ АОВ=∠АОK+∠OKB=45°+60°=105°

б)Δ АМВ - равнобедренный   и ∠ АВС=60° ⇒Δ АМВ - равносторонний

ВО - биссектриса равностороннего треугольника, а значит и высота.

угол между прямыми АМ и ВО  равен 90°


В треугольнике АВС угол А =90˚, АВ=2 см, ВС=4см, О - точка, равноудаленная от сторон, М- середина ВС
ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Математика