В одном ресторане в г. Тамбове администратор предлагает гостям сыграть в «Шеш-беш»: гость бросает одновременно две игральные кости. Если он выбросит комбинацию 5 и 6 очков хотя бы один раз из двух попыток, то получит комплимент от ресторана: чашку кофе или десерт бесплатно. Какова вероятность получить комплимент? Результат округлите до сотых.
Вероятность выбросить комбинацию {5; 6} складывается из двух возможностей:
- на первом кубике выпало 5, а на втором выпало 6;
- на первом кубике выпало 6, а на втором выпало 5.
Вероятность выпадения каждого числа равна в отдельности:
Тогда, вероятность выбросить комбинацию {5; 6} при броске двух кубиков складывается из двух несовместных событий (перечислены выше), каждое из которых представляет собой комбинацию независимых событий (выпадение первого и второго кубика):
Соответственно, вероятность не выбросить эту комбинацию соответствует вероятности противоположного события:
Вероятность не выбросить нужную комбинацию при двух бросках дважды определяется по правилу умножения вероятностей независимых событий:
Эта вероятность соответствует ситуации, когда гости не получат комплимент. Значит, противоположное событие - гости получат комплимент, оно произойдет с вероятностью:
ответ: 0.11