В математическом и историческом кружках занимаются 36 учащихся. В историческом кружке учащихся в 2 раза больше, чем в математическом. Сколько учащихся занимается в каждом из кружков?
Если посмотрим на схему, то заметим, что для математического кружка мы взяли один отрезок, а для исторического - два, причем отрезки равны. Найдем количество равных отрезков (частей):
1) 1+2 = 3 (ч.) - всего.
Вычислим, сколько учащихся приходится на один отрезок (часть), для этого сумму разделим на количество частей:
Создадим схему задачи:
Если посмотрим на схему, то заметим, что для математического кружка мы взяли один отрезок, а для исторического - два, причем отрезки равны. Найдем количество равных отрезков (частей):
1) 1+2 = 3 (ч.) - всего.
Вычислим, сколько учащихся приходится на один отрезок (часть), для этого сумму разделим на количество частей:
2) 36 : 3 = 12 (уч.) - занимаются в математическом кружке.
Так как в историческом кружке занимается в два раза больше учащихся, чем в математическом, то:
3) 12 ∙ 2 = 24 (уч.) - занимаются в историческом кружке.
ответ: 12 учащихся; 24 учащихся.
Пошаговое объяснение:
1
72
В каждом по 36
36×2=72
72:2=36