В каких случаях удобно решать задачу с системы двух линейных уравнений с двумя переменными?​

12keti 12keti    3   16.05.2020 09:38    0

Ответы
ElenaOlegovna26 ElenaOlegovna26  16.05.2020 10:30

Напомним, что из себя представляет система двух линейных уравнений с двумя переменными. Это система вида:

Из первого уравнения  можно получить линейную функцию, в случае если : . График данного уравнения – прямая линия.

Bторое линейное уравнение:

, из него также можно получить линейную функцию, при условии, что : . График данного уравнения – также прямая линия.

Запишем систему в другом виде:

Мы знаем, что множеством решений первого уравнения является множество точек, лежащих на соответствующей ему прямой, аналогично и для второго уравнения множество решений – это множество точек на другой прямой. Две прямые могут пересекаться – и тогда у системы будет единственное решение, единственная пара чисел х и у будет удовлетворять одновременно обоим уравнениям. Это происходит, если . Две прямые также при некоторых значениях численных параметров могут быть параллельны, в таком случае они никогда не пересекутся и не будут иметь ни одной общей точки, значит в этом случае система не будет иметь решений. Для этого должны выполняться условия:  и . Кроме того, две прямые могут совпадать, и тогда каждая точка будет решением обоих уравнений, а значит система будет иметь бесчисленное множество решений. Для этого должны выполняться условия:  и подстановки

Пример 1:

На данном уравнении можно продемонстрировать сразу несколько решения систем уравнений подстановки: выразим во втором уравнении х и подставим полученное выражение в первое уравнение:

Подставим найденное значение у во второе уравнение и найдем значение х алгебраического сложения алгебраического сложения: выполним сложение уравнений:

Из полученного уравнения найдем х:

Теперь вычтем из первого уравнения системы второе:

Таким образом, мы получили решение системы двумя и это решение – точка с координатами (2; 1).

ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Математика