Уравнение : 6cos^2(п-x)+13sinx=12
решите с объяснением

lizahi lizahi    2   12.07.2019 18:45    1

Ответы
catnizamova catnizamova  03.10.2020 01:59

Пошаговое объяснение:

6cos²(π-x) + 13sin(x) = 12 ⇒ 6cos²(x) + 13sin(x) = 12 ⇒ 6(1 - sin²(x)) + 13sin(x) - 12 = 0 ⇒ 6 - 6sin²(x) + 13sin(x) - 12 = 0 ⇒ 6sin²(x) - 13sin(x) + 6 = 0 ⇒ sin(x) = t,  | t | ≤ 1 ⇒ 6t² - 13t + 6 = 0

D = 13² - 4 * 6 * 6 = 169 - 144 = 25.

t = (13 ± 5)/12.      t = 3/2   t = 2/3

sin(x) = t ⇒ t = 2/3 ⇒ sin(x) = 2/3 ⇒ x = (-1)^n * arcsin(2/3) + πn, n ⊂ Z

ответ: x = (-1)^n * arcsin(2/3) + πn, n ⊂ Z

ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Математика