Для упрощения данного выражения, мы должны сначала раскрыть скобки, а затем выполнить соответствующие арифметические операции.
1. Раскроем скобки:
(m-1)(m+1)-(m-3) = m * m + m * 1 - 1 * (m+1) - (m-3)
2. Умножим и распределим значения в скобках:
= m^2 + m - m - 1 - m^2 + 3
Здесь m * 1 = m и 1 * (m + 1) = m + 1, а также (m - 3) * (m - 3) = (m - 3)^2 = m^2 - 3m - 3m + 9.
3. Сократим подобные члены:
= m^2 - m^2 + m - m - 1 + 3
Здесь m^2 - m^2 сократятся, оставляя нам только m, и m - m также сократятся, оставляя 0.
4. Упростим:
= 0 + 0 + 1 + 3
Так как все нули, которые мы получили выше, равны 0, и 1 + 3 = 4.
5. Получаем окончательный ответ:
= 4
Итак, окончательный ответ на упрощенное выражение (m-1)(m+1)-(m-3)^2 есть 4.
1. Раскроем скобки:
(m-1)(m+1)-(m-3) = m * m + m * 1 - 1 * (m+1) - (m-3)
2. Умножим и распределим значения в скобках:
= m^2 + m - m - 1 - m^2 + 3
Здесь m * 1 = m и 1 * (m + 1) = m + 1, а также (m - 3) * (m - 3) = (m - 3)^2 = m^2 - 3m - 3m + 9.
3. Сократим подобные члены:
= m^2 - m^2 + m - m - 1 + 3
Здесь m^2 - m^2 сократятся, оставляя нам только m, и m - m также сократятся, оставляя 0.
4. Упростим:
= 0 + 0 + 1 + 3
Так как все нули, которые мы получили выше, равны 0, и 1 + 3 = 4.
5. Получаем окончательный ответ:
= 4
Итак, окончательный ответ на упрощенное выражение (m-1)(m+1)-(m-3)^2 есть 4.