умоляю доведіть, що середня лінія трапеції менше півсуми її діагоналей

Элина1111111111112 Элина1111111111112    2   17.08.2019 05:30    1

Ответы
Lordfantomchik Lordfantomchik  05.10.2020 00:04
Теорема. Середня лінія трапеції паралельна основам і дорівнює їх півсумі. 

Доказ. 
Нехай відрізок РК – середня лінія трапеції ABCD і прямі ВР і ОГОЛОШЕННЯ перетинаються в точці Т. 

Треба довести, що: 

1) (PK)||(AD); 

2) PK=(BC+AD)/2. 

Трикутники ВСР і PDT рівні (так як PC=PD, ÐВРС=ÐDPT, ÐВСР=ÐPDT). Тому BC=DT, BP=PT і AT=AD+DT. Звідси середня лінія даної трапеції є середньою лінією трикутника і АВТ. По теоремі середньої лінії трикутника PK||AT і PK=AT×1/2. Значить, PK||AD і PK=(BC+AD)/2.
ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Математика