Δ АВС- равнобедренный, кв. ед.
Пошаговое объяснение:
Найдем стороны треугольника, воспользовавшись формулой расстояния между точками
Так как AB=BC , то Δ АВС - равнобедренный.
Проведем высоту ВМ, в равнобедренном треугольнике она является и медианой.
Значит, АМ= МС= 4√5: 2=2√5 ед.
Рассмотрим прямоугольный треугольник Δ АМВ и найдем катет ВМ по теореме Пифагора: в прямоугольном треугольнике квадрат гипотенузы равен сумме квадратов катетов.
Найдем площадь треугольника как полупроизведение стороны на высоту, проведенную к данной стороне.
Δ АВС- равнобедренный,
кв. ед.
Пошаговое объяснение:
Найдем стороны треугольника, воспользовавшись формулой расстояния между точками
Так как AB=BC , то Δ АВС - равнобедренный.
Проведем высоту ВМ, в равнобедренном треугольнике она является и медианой.
Значит, АМ= МС= 4√5: 2=2√5 ед.
Рассмотрим прямоугольный треугольник Δ АМВ и найдем катет ВМ по теореме Пифагора: в прямоугольном треугольнике квадрат гипотенузы равен сумме квадратов катетов.![BM^{2} =AB^{2} -AM^{2} ;\\BM = \sqrt{AB^{2} -AM^{2} } ;\\BM= \sqrt{(2\sqrt{10})^{2} - (2\sqrt{5})^{2} } =\sqrt{40-20} =\sqrt{20} =\sqrt{4\cdot5} =2\sqrt{5} .](/tpl/images/2088/4371/8b42f.png)
Найдем площадь треугольника как полупроизведение стороны на высоту, проведенную к данной стороне.