2\sqrt{2}* cos^{2} \frac{3\pi }{8} - \sqrt{2}

mar2865 mar2865    3   05.05.2019 16:26    1

Ответы
nikitaviktorov9 nikitaviktorov9  09.06.2020 11:24

0

Пошаговое объяснение:

cos2\alpha=cos^{2}\alpha-sin^{2}\alpha =2*cos^{2}\alpha -1=1-2*sin^{2}\alpha

- формула косинус двойного аргумента

2\sqrt{2} *cos^{2} \frac{3\pi }{8}-\sqrt{2}=\sqrt{2}*(2*cos^{2}\frac{3\pi }{8} -1) =\sqrt{2} *cos(2*\frac{3\pi }{8}) =\sqrt{2}*cos\frac{3\pi }{2}=\sqrt{2}*0=0

ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Математика