Теплоход проходит по течению реки до пункта назначения 70 км и после стоянки возвращается в пункт отправления. Найдите скорость теплохода в неподвижной воде, если скорость течения равна 4 км/ч, стоянка доится 8 часов, а в пункт отправления теплоход возвращается через 14 часов после отплытия из него. Разъясните , подробно!
S=70км
V1=4км/ч
t1=8ч
t2=14ч
Если не правильно ссори
Пусть х км/ч - собственная скорость теплохода, тогда (х + 4) км/ч - скорость теплохода по течению реки, (х - 4) км/ч - скорость теплохода против течения реки. 14 - 8 = 6 ч - время движения теплохода. Уравнение:
70/(х+4) + 70/(х-4) = 6
70 · (х - 4) + 70 · (х + 4) = 6 · (х + 4) · (х - 4)
70х - 280 + 70х + 280 = 6 · (х² - 4²)
140х = 6х² - 96
6х² - 140х - 96 = 0
D = b² - 4ac = (-140)² - 4 · 6 · (-96) = 19600 + 2304 = 21904
√D = √21904 = 148
х₁ = (140-148)/(2·6) = (-8)/12 = -2/3 (не подходит, так как < 0)
х₂ = (140+148)/(2·6) = 288/12 = 24
ответ: 24 км/ч - собственная скорость теплохода.
Проверка:
70 : (24 + 4) = 2,5 ч - время движения по течению реки
70 : (24 - 4) = 3,5 ч - время движения против течения реки
2,5 ч + 3,5 ч = 6 ч - время движения на теплоходе + 8 ч стоянка = 14 ч