Теорема о свойстве биссектрисы угла( док-во)

nata121114 nata121114    1   07.06.2019 15:30    0

Ответы
ПитерДина ПитерДина  01.10.2020 21:33
Теорема - свойство биссектрисы треугольника.
Если AA1 - биссектриса внутреннего угла A треугольника ABC, то ВА*/А*С= ВА/ АС.    Иными словами, биссектриса внутреннего угла треугольника делит противоположную сторону на части, пропорциональные заключающим 
ее сторонам.
Доказательство.
Проведем через B прямую, параллельную AC, и обозначим через D точку пересечения этой прямой с продолжением AA1 .   
Согласно свойству параллельных прямых имеем ÐBDA = ÐCAD. Так как AA1 - биссектриса, то ÐCAD = ÐDAB. Итак, ÐBDA =ÐDAB, потому BD = BA.    Из подобия треугольников CAA1 и BDA1 (по второму признаку 
ÐBDA1 = ÐCAA1 , ÐBA1 D = ÐCA1A) получаем ВА*/А*С =ВD/АС  =ВА/АС, что и требовалось доказать.    Заметим, что можно было бы с тем же успехом провести через B прямую, параллельную биссектрисе AA1,до пересечения в точке E с продолжением CA . Тогда EA = AB и СА /АЕ =СА/АВ  . 
ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Математика