Тема: «Пропорциональные отрезки в
прямоугольном
треугольнике» .нужны только 4,7
1) а = 25, b = 1.
2) b = 8, b = 4.
3) а = 2, b = 3.
4) а = 8, с =10.
5) b = 17, h = 15.
б) c = 6, h = 4.
7) h = 6, b = 2.
Найди a, b, c, h.
Найди а, с, а., И.
Найди с, a, b, h.
Найди b, a, b, h.
Найди a, c, a, be
Найди a, a, b, b.
Найди а. с. а.. b.​

Sanyapro2002 Sanyapro2002    3   03.03.2020 08:42    431

Ответы
niagara4 niagara4  03.03.2020 09:03

ответ: пиалал

Пошаговое объяснение:

ПОКАЗАТЬ ОТВЕТЫ
dias83782 dias83782  24.01.2024 15:47
Добрый день! Давайте рассмотрим каждый вопрос по очереди:

1) a = 25, b = 1.

Для нахождения оставшихся величин нам необходимо использовать теорему Пифагора, которая гласит: в прямоугольном треугольнике квадрат гипотенузы равен сумме квадратов катетов.
В данном случае у нас известна длина гипотенузы (a = 25) и одного катета (b = 1). Для нахождения второго катета (c) воспользуемся формулой Pифагора:

c² = a² - b²
c² = 25² - 1²
c² = 625 - 1
c² = 624
c = √624
c ≈ 24.98

Теперь найдем высоту (h) треугольника, для этого можем воспользоваться формулой для площади прямоугольного треугольника:

S = (1/2) * b * h
h = (2 * S) / b
h = (2 * 24.98) / 1
h ≈ 49.96

Итак, a = 25, b = 1, c ≈ 24.98, h ≈ 49.96.

2) b = 8, b = 4.

В данном случае у нас ошибка в записи - оба значения равны b. Поправим это:
b = 8, h = 4.

Для нахождения a воспользуемся теоремой Пифагора:

a² = b² + h²
a² = 8² + 4²
a² = 64 + 16
a² = 80
a = √80
a ≈ 8.94

Итак, a ≈ 8.94, b = 8, h = 4.

3) a = 2, b = 3.

Даны два катета прямоугольного треугольника. Для нахождения гипотенузы (c) снова используем теорему Пифагора:

c² = a² + b²
c² = 2² + 3²
c² = 4 + 9
c² = 13
c = √13
c ≈ 3.61

Для нахождения высоты (h) воспользуемся формулой для площади прямоугольного треугольника:

S = (1/2) * b * h
h = (2 * S) / b
h = (2 * 6) / 3
h ≈ 4

Итак, a = 2, b = 3, c ≈ 3.61, h ≈ 4.

4) a = 8, с =10.

Даны длины гипотенузы (a) и гипотенузы (c). Для нахождения второго катета (b) воспользуемся теоремой Пифагора:

b² = c² - a²
b² = 10² - 8²
b² = 100 - 64
b² = 36
b = √36
b = 6

Для нахождения высоты (h) воспользуемся формулой для площади прямоугольного треугольника:

S = (1/2) * b * h
h = (2 * S) / b
h = (2 * 40) / 6
h ≈ 13.33

Итак, a = 8, b = 6, c = 10, h ≈ 13.33.

5) b = 17, h = 15.

Даны длина одного катета (b) и высота (h). Для нахождения второго катета (a) воспользуемся формулой для площади прямоугольного треугольника:

S = (1/2) * a * h
a = (2 * S) / h
a = (2 * 127.5) / 15
a ≈ 17

Для нахождения гипотенузы (c) снова используем теорему Пифагора:

c² = a² + b²
c² = 17² + 15²
c² = 289 + 225
c² = 514
c ≈ √514
c ≈ 22.68

Итак, a ≈ 17, b = 17, c ≈ 22.68, h = 15.

б) c = 6, h = 4.

Даны длина гипотенузы (c) и высота (h). Для нахождения второго катета (b) воспользуемся формулой для площади прямоугольного треугольника:

S = (1/2) * b * h
b = (2 * S) / h
b = (2 * 12) / 4
b = 6

Для нахождения гипотенузы (a) снова используем теорему Пифагора:

a² = c² - b²
a² = 6² - 6²
a² = 36 - 36
a² = 0
a = √0
a = 0

Итак, a = 0, b = 6, c = 6, h = 4.

7) h = 6, b = 2.

Даны длина одного катета (b) и высота (h). Для нахождения второго катета (a) воспользуемся формулой для площади прямоугольного треугольника:

S = (1/2) * a * h
a = (2 * S) / h
a = (2 * 6) / 6
a = 2

Для нахождения гипотенузы (c) снова используем теорему Пифагора:

c² = a² + b²
c² = 2² + 6²
c² = 4 + 36
c² = 40
c = √40
c ≈ 6.32

Итак, a = 2, b = 2, c ≈ 6.32, h = 6.

Объединяя все результаты, получим:

1) a = 25, b = 1, c ≈ 24.98, h ≈ 49.96.
2) a ≈ 8.94, b = 8, h = 4.
3) a = 2, b = 3, c ≈ 3.61, h ≈ 4.
4) a = 8, b = 6, c = 10, h ≈ 13.33.
5) a ≈ 17, b = 17, c ≈ 22.68, h = 15.
б) a = 0, b = 6, c = 6, h = 4.
7) a = 2, b = 2, c ≈ 6.32, h = 6.

Надеюсь, ответы понятны и полезны! Если у вас возникнут еще вопросы, не стесняйтесь задавать их.
ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Математика