Сторону квадрата уменьшели на 60% .Как изменилась площадь квадрата?

Tina2802 Tina2802    1   31.10.2022 21:32    12

Ответы
Rogonova Rogonova  31.10.2022 22:00

Нехай сторона квадрата = a

S = a^2

тоді 40% цього квадрата = 0.4a

S = (0.4a)^2 = 0.16a^2

1) a^2 - 0.16a^2 = 0.84a^2 - площа зменшилась на 0.84a^2

(шукаємо скільки % становить 0.84a^2 від a^2)

2) 0.84a^2/a^2 * 100% = 0.84 * 100% = 84%

ПОКАЗАТЬ ОТВЕТЫ
Лиза200111111 Лиза200111111  31.10.2022 22:00

Примем сторону исходного квадрата за единицу. Тогда площадь исходного квадрата равна 1 кв. ед, а площадь нового:

\dfrac{60}{100} \cdot \dfrac{60}{100}=\dfrac{3600}{10000}=\dfrac{36}{100}

То есть площадь уменшилась на 100–36=64%.

ответ: уменьшилась на 64%.

ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Математика