Сторона ромба дорівнює a, а гострий кут - β. знайдіть діагоналі ромба.

ОверДовн ОверДовн    1   03.09.2019 18:10    0

Ответы
QueenMarceline QueenMarceline  03.08.2020 15:17
Хорошо, в принципе без рисунка можно вывести ответ формулами.
Решение (см.Рисунок во вложении):  ∠β ²±√
1)Из теоремы косинусов найдем меньшую диагональ АС, лежащую напротив угла ∠β:
АС² = АВ² + ВС² - 2*АВ*ВС*cosβ
АС = √(АВ² + ВС² - 2*АВ*ВС*cosβ), где АВ² = а², ВС² = а².
имеем АС = √(а²+а²-2*а*а*cosβ)
AC = √(2a² - 2a²*cosβ) = a√(2(1 - cosβ))
2)Назовем тупой угол ромба -  γ , γ = 180° - β
Из теоремы косинусов найдем большую диагональ ВD, лежащую напротив угла ∠γ:
ВD² = CD² + ВС² - 2*CD*ВС*cosγ
ВD = √(CD² + ВС² - 2*CD*ВС*cosγ), где CD² = а², ВС² = а².
имеем ВD = √(а²+а²-2*а*а*cosγ)
ВD = √(2a² - 2a²*cosγ) = a√(2(1 - cosγ)).
Вот собственно и все
меньшая диагональ ромба АС = a√(2(1 - cosβ))
большая диагональ ромба ВD = a√(2(1 - cosγ)).
ответ: a√(2(1 - cosβ)) ; a√(2(1 - cosγ)).
Сторона ромба дорівнює a, а гострий кут - β. знайдіть діагоналі ромба.
ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Математика