Сторона АВ треугольника АВС параллельна плоскости альфа, а стороны СА и СВ пересекают плоскость альфа в точках А1 и В1 соответственно. Найдите АВ, если АС = 9 см, A1С = 3 см, А1В1 = 2 см.

ilyaastafiev20 ilyaastafiev20    3   25.11.2021 06:39    14

Ответы
559858 559858  25.11.2021 06:40

Сторона АВ треугольника АВС лежит в плоскости альфа.Плоскость бетта параллельна плоскости альфа и пересекает стороны АС и ВС в точках А1 и В1 соответственно.Найти длину отрезка А1В1,если АВ=12 см,СВ1:В1В=2:3

Объяснение:

По условию СВ1:В1В=2:3 ⇒на СВ приходится 5 частей.

α║β , то линии пересечения плоскостей параллельны ⇒АВ║А₁В₁.

ΔАВС подобен ΔА₁В₁С по 2 углам : ∠АВС=∠А₁В₁С как соответственные СВ-секущая, ∠С-общий .Поэтому сходственные стороны пропорциональны \frac{AB}{A1B1} =\frac{BC}{B1C}

A1B1

AB

=

B1C

BC

или \frac{12}{A1B1} =\frac{5}{2}

A1B1

12

=

2

5

или А₁В₁= \frac{24}{5}

5

24

=4,8

ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Математика