Сколько трехзначных чисел обладает следующим свойством : если из такого числа вычесть 297 ,то получится трехзначное число ,записанное теми же цифрами ,но в обратном порядке? (а) 6 (б) 7 (в) 10 (г) 60 (д) 70

pudish pudish    3   19.05.2019 03:50    5

Ответы
21alex1488 21alex1488  12.06.2020 08:57

ОДЗ: числа a,c - целые положительные, не равны нулю (иначе число перевертыш будет начинаться с нуля, т.е. превратиться в двузначное), и b - целое неотрицательное

 

Нужно расписать каждое из чисел. (число ДО вычитания и ПОСЛЕ)

 

Пусть будет до это Х, после это У.

число X расписываем - то есть в записи это выглядит как abc, а расписанное как X=100a+10b+с. (Как в 5 классе)

По условию Y в обратное порядке. Тогда Y=100c+10b+a

А когда из Х вычитаем 297, должны получить У. Составим уравнение

100a+10b+c-297=100c+10b+a

b сократиться, что означает b любое из десяти цифр

99a-99c=297

99(a-c)=297

a-c=3

a=3+c

 

Составим такие пары: 4 1. 5 2. 6 3. 7 4. 8 5. 9 6. получили 6 пар.

Но! Так как b любое из 10 цифр, то 

6*10=60 различных трехзначных чисел

ответ: Г - 60

 

 

ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Математика