Сколько существует натуральных чисел от 1 до 10000,которые не делятся ни на 3,ни на 5

говнетим555 говнетим555    1   30.08.2019 23:30    1

Ответы
Алекс117829 Алекс117829  30.08.2019 23:30
Среди 999 чисел, меньших 1000, 199 чисел кратны 5 : [999 : 5] = 199 *. в этом же интервале имеются 142 числа, кратных 7 : [999 : 7] = 142* . среди 142 чисел, кратных 7, имеются числа, которые делятся также и на 5, то есть кратные 35. всего таких чисел 28: [999 : 35]= 28* . эти 28 чисел уже учтены в числе 199, найденном ранее. поэтому количество чисел, меньших 1000, которые делятся либо на 5, либо на 7, равно 199 + 142 - 28 = 313. в рассматриваемом интервале остается 999 - 313 = 686 чисел, которые не делятся ни на 5, ни на 7. * [n] - целая часть числа n . например, [13,45] = 13
ПОКАЗАТЬ ОТВЕТЫ
gurgurov68 gurgurov68  30.08.2019 23:30
Среди 999 чисел, меньших 1000, 199 чисел кратны 5 : [999 : 5] = 199 *. в этом же интервале имеются 142 числа, кратных 7 : [999 : 7] = 142* . среди 142 чисел, кратных 7, имеются числа, которые делятся также и на 5, то есть кратные 35. всего таких чисел 28: [999 : 35]= 28* . эти 28 чисел уже учтены в числе 199, найденном ранее. поэтому количество чисел, меньших 1000, которые делятся либо на 5, либо на 7, равно 199 + 142 - 28 = 313. в рассматриваемом интервале остается 999 - 313 = 686 чисел, которые не делятся ни на 5, ни на 7. * [n] - целая часть числа n . например, [13,45] = 13.
ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Математика