Сколькими нулями оканчивается число: 2016! = 1*2*3*4**2014*2015*2016? 40 !

susannamuratov1 susannamuratov1    1   02.09.2019 19:30    0

Ответы
ZigFinde ZigFinde  10.08.2020 08:47
Представим наше число
P=2016!
в виде
P=10^n*Q
где Q не делится на 10. Тогда P оканчивается ровно n нулями.
10 в свою очередь равно произведению 2 и 5. Поэтому P оканчивается на минимум между степенями 2 и 5 в разложении числа P:
P=2^m*W=5^b*E\\n=min(m,b)
Посчитаем, в какой степени входит 5 в разложение на множители числа P. Так как P является произведением 2016 чисел, то нам надо посмотреть, в какой степени 5 входит в каждое из этих чисел. Максимальная степень - 4, т.к. 5^4=625\ \textless \ 2016, 5^5=3125\ \textgreater \ 2016
5^4 содержится в разложении на множители [{2016\over625}]=3 чисел (квадратные скобки - целая часть числа).
5^3 содержится в разложении на множители [{2016\over125}]=16. Вычтем уже учтенные в 5^4 и останется 13.
5^2 содержится в разложении на множители [{2016\over25}]=80. Вычтем уже учтенные и останется 64.
5^1 содержится в разложении на множители [{2016\over5}]=403. Вычтем уже учтенные и останется 323.
Итого: 323+64*2+13*3+3*4=502.
У 2 степень в разложении больше (по крайней мере 2016/2=1008).
Поэтому оканчивается на 502 нуля.
ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Математика