С6 дана бесконечная арифметическая прогрессия, первый член которой равен 2013 а разность 8. каждый член прогрессии заменили суммой его цифр.получилось последовательность однозначных чисел. а)найти 1000 член получившийся прогрессии, б)сумму первых 1000 членов получившийся прогрессии, в) чему ровна наибольшая сумма 1010членов этой прогрессии
а) тысячный член исходной прогрессии равен 2013+8*1000=10013
1+0+0+1+3=5
б) Теорема. Сумма цифр числа дает такой же остаток от деления на 9, что и само число.
Следствие. Последовательность, получившаяся в задании, состоит из остатков от деления на 9 членов исходной прогрессии, в которой все нули заменены девятками.
2013 mod 9=6 первый член прогрессии 6
8 mod 9 = 8 поэтому второй член прогрессии (6+8) mod 9 = 5, третий (5+8) mod 9=4, четвертый - 3, пятый - 2, шестой - 1, седьмой (1+8) mod 9= 0 поэтому 9 , восьмой- 8, девятый - 7, десятый опять 6
Итак, последовательность периодична с периодом 9. Сумма первых 9 членов равна 6+5+4+3+2+1+9+8+7=45
сумма первых 999 (111*9) членов равна 111*45= 4995, а сумма 1000 членов равна сумме 999 членов + A1(тоесть 6) = 5001
в) т.к. 1010/9=112 , а 1010 mod 9=2 , то сумма любых подряд идущих членов равна 112*45 + сумма следующих двух членов. Для того ,чтобы сумма была наибольшей нужно, чтобы 9 и 8 попали в эту двойку.
получается 112*45+9+8 =5057
а) 5, б)5001, в)5057