решите задачу^-^ В стране любые два города соединены дорогой с односторонним движением. Докажите, что стартуя из некоторого города, можно проехать по всем городам, побывав в каждом по одному разу.
Рассмотрим город A, из которого выходит наибольшее число дороги, и произвольный город B. Если дорога ведёт из A в B, то всё в порядке. Если же дорога ведёт из B в A, то, поскольку из B выходит не больше дорог, чем из A, найдётся город C, в который ведёт дорога из A, но не ведёт дорога из B. Тогда можно из A попасть в B по маршруту ACB.
Решение
Рассмотрим город A, из которого выходит наибольшее число дороги, и произвольный город B. Если дорога ведёт из A в B, то всё в порядке. Если же дорога ведёт из B в A, то, поскольку из B выходит не больше дорог, чем из A, найдётся город C, в который ведёт дорога из A, но не ведёт дорога из B. Тогда можно из A попасть в B по маршруту ACB.
Пошаговое объяснение: