cos^2x - 1/2sin2x + cosx = sinx
sin2x= 2sinx*cosx
cos^2x- 1/2*2sinx*cosx+cosx = sinx
cos^2x - 1/2*2sinx*cosx+cosx - sinx = 0
cos^2x-sinx*cosx+cosx-sinx=0
cosx(cosx+1) - sinx(cosx+1)=0
(cosx+1)*(cosx-sinx)=0
cosx+1=0 -> cosx= -1 -> x=pi+2pi*K
cosx-sinx=0 Делим уравнение на корень из 2
sin(pi/4-x)=0
pi/4-x=pi*n
x=pi/4-pi*n
cos^2x - 1/2sin2x + cosx = sinx
sin2x= 2sinx*cosx
cos^2x- 1/2*2sinx*cosx+cosx = sinx
cos^2x - 1/2*2sinx*cosx+cosx - sinx = 0
cos^2x-sinx*cosx+cosx-sinx=0
cosx(cosx+1) - sinx(cosx+1)=0
(cosx+1)*(cosx-sinx)=0
cosx+1=0 -> cosx= -1 -> x=pi+2pi*K
cosx-sinx=0 Делим уравнение на корень из 2
sin(pi/4-x)=0
pi/4-x=pi*n
x=pi/4-pi*n
Поделим на :
,k∈Z