Решите неравенство используя метод интервалов (2х-5)(х+3)>0​

Илий Илий    3   18.05.2020 05:38    20

Ответы
andreydikenson1 andreydikenson1  14.01.2024 17:00
Давайте решим это неравенство по шагам, используя метод интервалов.

1. Вначале нам необходимо разложить данное неравенство на множители.
(2х-5)(х+3) > 0

2. Для этого, разложим каждый множитель на множители:
2х-5 > 0 и х+3 > 0

3. Решим первое неравенство:
2х-5 > 0

Для этого добавим 5 к обоим сторонам:
2х > 5
Теперь, разделим обе стороны на 2:
х > 2.5

Таким образом, первое неравенство решается так: х > 2.5

4. Решим второе неравенство:
х+3 > 0

Для этого, вычтем 3 из обоих сторон:
х > -3

Таким образом, второе неравенство решается так: х > -3

5. Теперь, объединим оба решения:
Поскольку неравенство имеет знак "больше", нас интересуют значения х, которые больше как 2.5, так и -3.
Поэтому, решение данного неравенства будет следующим: х > 2.5 и х > -3

6. Найдем пересечение двух интервалов:
Найдем минимальное значение х, которое удовлетворяет обоим неравенствам.
В данном случае, мы видим, что х должно быть больше 2.5 и больше -3.
Таким образом, минимальное значение х, которое подходит, - это х > 2.5

Значит, решение неравенства (2х-5)(х+3) > 0 будет следующим: х > 2.5
ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Математика