Пошаговое объяснение:
1). |x-3|≥1,8
Допустим: |x-3|=1,8
При x-3≥0:
x-3=1,8; x₁=1,8+3=4,8
При x-3<0:
3-x=1,8; x₂=3-1,8=1,2
Проверка при x₁>4,8; x₂>1,2: |5-3|≥1,8; |2|≥1,8; 2>1,8 - неравенство выполняется; |2-3|≥1,8; |-1|≥1,8; 1<1,8 - неравенство не выполняется.
Проверка при x₁<4,8; x₂<1,2: |4-3|≥1,8; |1|≥1,8; 1<1,8- неравенство не выполняется; |1-3|≥1,8; |-2|≥1,8; 2>1,8 - неравенство выполняется;
Проверка при x₁<4,8; x₂>1,2: |4-3|≥1,8; |1|≥1,8; 1<1,8 - неравенство не выполняется.
Проверка при x₁>4,8; x₂<1,2: |5-3|≥1,8; |2|≥1,8; 2>1,8 - неравенство выполняется;
|-5-3|≥1,8; |-8|≥1,8; 8>1,8 - неравенство выполняется
Следовательно, 1,2>x>4,8
ответ: x∈(-∞; 1,2]∪[4,8; +∞)
2) |2-x|>1/3
Допустим: |2-x|=1/3
При 2-x≥0:
2-x=1/3; x₁=1 3/3 -1/3=1 2/3
При 2-x<0:
x-2=1/3; x₂=1/3 +2=2 1/3
Проверка при x₁>1 2/3; x₂>2 1/3: |2-2|>1/3; |0|>1/3; 0<1/3 - неравенство не выполняется; |2-3|>1/3; |-1|>1/3; 1>1/3 - неравенство выполняется.
Проверка при x₁<1 2/3; x₂<2 1/3: |2-1|>1/3; |1|>1/3; 1>1/3 - неравенство выполняется; |2-2|>1/3; |0|>1/3; 0<1/3 - неравенство не выполняется.
Проверка при x₁<1 2/3; x₂>2 1/3: |2-(-3)|>1/3; |5|>1/3; 5>1/3 - неравенство выполняется; |2-3|>1/3; |-1|>1/3; 1>1/3 - неравенство выполняется.
Проверка при x₁>1 2/3; x₂<2 1/3: |2-2|>1/3; |0|>1/3; 0<1/3 - неравенство не выполняется.
Следовательно, 1 2/3>x>2 1/3
ответ: x∈(-∞; 1 2/3)∪(2 1/3; +∞)
Пошаговое объяснение:
1). |x-3|≥1,8
Допустим: |x-3|=1,8
При x-3≥0:
x-3=1,8; x₁=1,8+3=4,8
При x-3<0:
3-x=1,8; x₂=3-1,8=1,2
Проверка при x₁>4,8; x₂>1,2: |5-3|≥1,8; |2|≥1,8; 2>1,8 - неравенство выполняется; |2-3|≥1,8; |-1|≥1,8; 1<1,8 - неравенство не выполняется.
Проверка при x₁<4,8; x₂<1,2: |4-3|≥1,8; |1|≥1,8; 1<1,8- неравенство не выполняется; |1-3|≥1,8; |-2|≥1,8; 2>1,8 - неравенство выполняется;
Проверка при x₁<4,8; x₂>1,2: |4-3|≥1,8; |1|≥1,8; 1<1,8 - неравенство не выполняется.
Проверка при x₁>4,8; x₂<1,2: |5-3|≥1,8; |2|≥1,8; 2>1,8 - неравенство выполняется;
|-5-3|≥1,8; |-8|≥1,8; 8>1,8 - неравенство выполняется
Следовательно, 1,2>x>4,8
ответ: x∈(-∞; 1,2]∪[4,8; +∞)
2) |2-x|>1/3
Допустим: |2-x|=1/3
При 2-x≥0:
2-x=1/3; x₁=1 3/3 -1/3=1 2/3
При 2-x<0:
x-2=1/3; x₂=1/3 +2=2 1/3
Проверка при x₁>1 2/3; x₂>2 1/3: |2-2|>1/3; |0|>1/3; 0<1/3 - неравенство не выполняется; |2-3|>1/3; |-1|>1/3; 1>1/3 - неравенство выполняется.
Проверка при x₁<1 2/3; x₂<2 1/3: |2-1|>1/3; |1|>1/3; 1>1/3 - неравенство выполняется; |2-2|>1/3; |0|>1/3; 0<1/3 - неравенство не выполняется.
Проверка при x₁<1 2/3; x₂>2 1/3: |2-(-3)|>1/3; |5|>1/3; 5>1/3 - неравенство выполняется; |2-3|>1/3; |-1|>1/3; 1>1/3 - неравенство выполняется.
Проверка при x₁>1 2/3; x₂<2 1/3: |2-2|>1/3; |0|>1/3; 0<1/3 - неравенство не выполняется.
Следовательно, 1 2/3>x>2 1/3
ответ: x∈(-∞; 1 2/3)∪(2 1/3; +∞)