Решить . в магазине были апельсины, всего меньше ста. сначала их хотели разложить а упаковки, по 8 штук в каждую, но тогда бы осталось два лишних апельсина. тогда продавец взял один апельсин для витрины, а остальные апельсины разложил в упаковки, по семь штук в каждой - и лишних апельсинов не осталось. сколько апельсинов было сначала? запишите решение и ответ.

sellvladklim00oy13em sellvladklim00oy13em    2   30.08.2019 01:20    131

Ответы
katyaaalovely katyaaalovely  26.08.2020 12:15

50 апельсинов

Пошаговое объяснение:

Пусть сначала было X апельсинов. Тогда по условию число X можно представить в виде:

X = 8·n + 2 или X - 1 = 7·k,

где n и k частные при делении (натуральные числа).

Апельсинов было всего меньше 100. Тогда

8·n + 2 < 100

8·n < 98

n < 12,25.

Выражение X - 1 = 7·k равносильно к X = 7·k + 1. Приравниваем выражения для X:

8·n + 2 = 7·k + 1

8·(n + 1) - 6 = 7·(k + 1) - 6

8·(n + 1)  = 7·(k + 1)

Так как 8 и 7 взаимно простые число, то отсюда следует, что (n + 1) кратно 7. Отсюда n = 6, 13, Но из-за ограничения n < 12,25 получим единственное значение n = 6 и значение Х:

X = 8·6 + 2 = 48 + 2 =50.

ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Математика