решить уравнение
Найдите все значения параметра а, при которых уравнение
(sinx-a)(tgx-a)=0 имеет единственное решение на интервале (-pi/2;3pi/4).
напишите подробно!
( Если что, ответ а€{-1;0},[1;+бесконечность) )

papka89 papka89    3   29.10.2020 23:07    116

Ответы
khalova2002 khalova2002  29.10.2020 23:10

Решение простейших тригонометрических уравнений

Пример 1. Найдите корни уравнения

\[ \cos\left(4x+\frac{\pi}{4}\right)=-\frac{\sqrt{2}}{2}, \]

принадлежащие промежутку [-\pi;\pi).

Решение. Используем вторую формулу на рисунке. Здесь и далее полагаем k,\,n\in Z (на всякий случай, эта запись означает, что числа n и k принадлежат множеству целых чисел):

\[ 4x+\frac{\pi}{4}=\pm\operatorname{arccos \left(-\frac{\sqrt{2}}{2}\right)}+2\pi k. \]

Арккосинус a есть число, заключенное в интервале от 0 до \pi, косинус которого равен a.

Арксинус a есть число, заключенное в интервале от -\pi до \pi, косинус которого равен a.

Другими словами, нам нужно подобрать такое число из промежутка [0;2\pi], косинус которого был бы равен -\frac{\sqrt{2}}{2}. Это число \frac{3\pi}{4}. Используя это, получаем:

\[ 4x+\frac{\pi}{4} = \pm\frac{3\pi}{4}+2\pi k\Leftrightarrow \left[\begin{array}{l}x = \frac{\pi}{8}+\frac{\pi k}{2}, \\ x = -\frac{\pi}{4}+\frac{\pi n}{2}.\end{array}\right. \]

ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Математика