x = π n + tan^(-1)(1/3 (-1 - )), n ∈Z
x = π n + tan^(-1)(1/3 ( - 1)), n ∈ Z
Пошаговое объяснение:
3 tan^2(x) + 2 tan(x) - 2 = 0
↓
tan(x) (3 tan(x) + 2) = 2
tan(x) (3 tan(x) + 2) - 2 = 0
-2 + (2 sin(x))/cos(x) + (3 sin^2(x))/(cos^2(x)) = 0
(3 sin^2(2 x))/(cos(2 x) + 1)^2 + (2 sin(2 x))/(cos(2 x) + 1) - 2 = 0
x = π n + tan^(-1)(1/3 (-1 - )), n ∈Z
x = π n + tan^(-1)(1/3 ( - 1)), n ∈ Z
Пошаговое объяснение:
3 tan^2(x) + 2 tan(x) - 2 = 0
↓
tan(x) (3 tan(x) + 2) = 2
tan(x) (3 tan(x) + 2) - 2 = 0
-2 + (2 sin(x))/cos(x) + (3 sin^2(x))/(cos^2(x)) = 0
(3 sin^2(2 x))/(cos(2 x) + 1)^2 + (2 sin(2 x))/(cos(2 x) + 1) - 2 = 0