Решить показательное уравнение: (2x-3)*5^(3x-2)=2x-3

vik5611 vik5611    1   07.07.2019 22:00    0

Ответы
2001maks44 2001maks44  30.07.2020 23:49
(2x-3)*5^(3x-2)=2x-3
(2x-3)*5^(3x-2)-(2x-3)=0
(2x-3)*(5^(3x-2)-1)=0
2x-3=0 или  5^(3x-2)-1=0
2x-3=0, 2x=3, x=1,5
5^(3x-2)-1=0, 5(3x-2)=1, 5^(3x-2)=5⁰
3x-2=0, 3x=2, x=2/3
x₁=1,3.   x₂=2/3
ПОКАЗАТЬ ОТВЕТЫ
Настя040827 Настя040827  30.07.2020 23:49
1) 2х-3=0, откуда х = 1,5
2) 2х-3 не равно 0, тогда делим обе части уравнения на 2х-3, получаем 5^(3x-2)=1, откуда 3х-2=0, х=2/3
ответ: 3/2, 2/3
ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Математика