Решить неравенство lg(2x-1)> =lg(x+3)

Hyun79 Hyun79    3   31.07.2019 14:10    1

Ответы
krop40 krop40  03.10.2020 18:38
2х-1≥х+3
2х-1>0
x+3>0
Это в одной системе неравенств.
Получим х≥4
х>0,5
x>-3
ответ: х≥4
ПОКАЗАТЬ ОТВЕТЫ
taklecovatana taklecovatana  03.10.2020 18:38
О.Д.З:

\left \{ {{2x-1\ \textgreater \ 0} \atop {x+3\ \textgreater \ 0}} \right.
\left \{ {{x\ \textgreater \ \frac{1}{2} } \atop {x\ \textgreater \ -3}} \right. =\ \textgreater \ x\ \textgreater \ \frac{1}{2}

Решение:

lg(2x-1) \geq lg(x+3)
lg(2x-1) - lg(x+3) \geq 0
lg(\frac{[2x-1]}{[x+3]}) \geq 0
\frac{(2x-1)}{(x+3)} \geq 1
\frac{(2x-1)}{(x+3)} -1 \geq 0
\frac{(2x-1 -x -3)}{(x+3)} \geq 0
\frac{(x-4)}{(x+3)} \geq 0

Применим метод интервалов:

___+_____|________-________|_____+_______≥0
                (-3)                             4                      

x∈(-∞; -3)∪[4; +∞)

Найдем корни с учетом О.Д.З:

x∈[4; +∞)

ответ: x∈[4; +∞)
ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Математика