Решить дифференциальное уравнение (xy^2 + x)dx - (y - x^2 y)dy=0, y=1; x=2

loric225p0cgrp loric225p0cgrp    2   20.06.2019 11:28    1

Ответы
sofya112233 sofya112233  16.07.2020 11:55

\displaystyle x(y^2+1)dx=y(1-x^2)dy

Это уравнение с разделяющимися переменными

\displaystyle \int\frac{xdx}{1-x^2}=\int\frac{ydy}{y^2+1}~~~\Rightarrow~~~ -\frac{1}{2}\int\frac{d(1-x^2)}{1-x^2}=\frac{1}{2}\int\frac{(y^2+1)}{y^2+1}\\ \\ -\ln|1-x^2|+\ln C=\ln|y^2+1|\\ \\ \ln\bigg|\frac{C}{1-x^2}\bigg|=\ln|y^2+1|~~~\Rightarrow~~~ \boxed{\frac{C}{1-x^2}=y^2+1}}

Получили общий интеграл дифференциального уравнения.

Найдем решение задачи Коши, подставляя начальные условия:

\dfrac{C}{1-2^2}=1^2+1^2~~~\Rightarrow~~~~C=-6

Частный интеграл: \boxed{\frac{6}{x^2-1}=y^2+1}}

ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Математика