Пошаговое объяснение:
\begin{gathered}f(x)=6x-2\; ,\; \; (\pi ,\pi )a_0=\frac{1}{\pi }\int\limits^{\pi }_{-\pi }f(x)\, dx =\frac{1}{\pi } \int\limits^{\pi }_{-\pi }(6x-2)\, dx=\frac{(6x-2)^2}{\pi \cdot 6\cdot 2}\Big |_{-\pi }^{\pi }==\frac{1}{12\pi }\cdot ((6\pi -2)^2-(-6\pi -2)^2)=-\frac{4\pi }{\pi }=-4a_{n}= \frac{1}{\pi }\int\limits^{\pi }_{-\pi }f(x)\cdot cosnx\, dx=\frac{1}{\pi } \int\limits^{\pi }_{-\pi }(6x-2)cosxnx\, dx==[u=6x-2,\; du=6dx,\; dv=cosnx,\; v=\frac{1}{n}sinnx]=\end{gathered}
f(x)=6x−2,(π,π)
a
0
=
π
1
−π
∫
f(x)dx=
(6x−2)dx=
π⋅6⋅2
(6x−2)
2
∣
12π
⋅((6π−2)
−(−6π−2)
)=−
4π
=−4
n
f(x)⋅cosnxdx=
(6x−2)cosxnxdx=
=[u=6x−2,du=6dx,dv=cosnx,v=
sinnx]=
\begin{gathered}=\frac{1}{\pi }\Big (\frac{6x-2}{n}\cdot sin\, nx\Big |_{-\pi }^{\pi }-\frac{6}{n}\int\limits^{\pi }_{-\pi }sin\, nx\, dx\Big )==\frac{1}{\pi }\cdot \Big (0+\frac{6}{n^2}\cdot cos\, nx\Big |_{-\pi }^{\pi }\Big )=\frac{1}{\pi }\cdot \frac{6}{n^2}\cdot \Big (cos\pi n-cos(-\pi n)\Big )=0 \end{gathered}
(
6x−2
⋅sinnx
−
6
sinnxdx)=
⋅(0+
⋅cosnx
)=
⋅
⋅(cosπn−cos(−πn))=0
\begin{gathered}b_{n}=\frac{1}{\pi }\int\limits^{\pi }_{-\pi }f(x)sin\, nx\, dx=\frac{1}{\pi }\int\limits^{\pi }_{-\pi }(6x-2)\cdot sin\, nx\, dx==[u=6x-2,\; du=6dx,\; dv=sin\, nxdx,\; v=-\frac{1}{n}cos\, nx]==\frac{1}{\pi }\cdot \Big (-\frac{6x-2}{n}cos\, nx\Big |_{-\pi }^{\pi }+\frac{6}{n}\int\limits^{\pi }_{-\pi }cos\, nx\, dx\Big )==-\frac{1}{\pi n}\cdot \Big ((6\pi -2)\cdot cos\, \pi n-(-6\pi -2)\cdot cos(-\pi n)\Big )++\frac{6}{\pi n^2}\cdot sin\, nx\Big |_{-\pi }^{\pi }==-\frac{1}{\pi n}\cdot \Big ((6\pi -2)\cdot (-1)^{n}+(6\pi +2)\cdot (-1)^{n}\Big )+0=\end{gathered}
b
f(x)sinnxdx=
(6x−2)⋅sinnxdx=
=[u=6x−2,du=6dx,dv=sinnxdx,v=−
cosnx]=
⋅(−
cosnx
+
cosnxdx)=
=−
πn
⋅((6π−2)⋅cosπn−(−6π−2)⋅cos(−πn))+
⋅((6π−2)⋅(−1)
+(6π+2)⋅(−1)
)+0=
\begin{gathered}= \frac{(-1)^{n}}{\pi n}\cdot (6\pi -2+6\pi +2)=\frac{(-1)^{n}\cdot 12\pi }{\pi n}=\frac{(-1)^{n}\cdot 12}{n}f(x)\sim \frac{a_0}{2}+\sum\limits _{n=1}^{\infty }\Big (a_{n}\cdot cos\, nx+b_{n}\cdot sin\, nx\Big )f(x)=-4+\sum \limits _{n=1}^{\infty }\Big (\frac{(-1)^{n}\cdot 12}{n}\cdot sin\, nx\Big )= -4+12\sum \limits _{n=1}^{\infty }\frac{(-1)^{n}sin\, nx}{n}\end{gathered}
(−1)
⋅(6π−2+6π+2)=
⋅12π
⋅12
f(x)∼
n=1
∑
∞
(a
⋅cosnx+b
⋅sinnx)
f(x)=−4+
⋅sinnx)=−4+12
sinnx
Пошаговое объяснение:
\begin{gathered}f(x)=6x-2\; ,\; \; (\pi ,\pi )a_0=\frac{1}{\pi }\int\limits^{\pi }_{-\pi }f(x)\, dx =\frac{1}{\pi } \int\limits^{\pi }_{-\pi }(6x-2)\, dx=\frac{(6x-2)^2}{\pi \cdot 6\cdot 2}\Big |_{-\pi }^{\pi }==\frac{1}{12\pi }\cdot ((6\pi -2)^2-(-6\pi -2)^2)=-\frac{4\pi }{\pi }=-4a_{n}= \frac{1}{\pi }\int\limits^{\pi }_{-\pi }f(x)\cdot cosnx\, dx=\frac{1}{\pi } \int\limits^{\pi }_{-\pi }(6x-2)cosxnx\, dx==[u=6x-2,\; du=6dx,\; dv=cosnx,\; v=\frac{1}{n}sinnx]=\end{gathered}
f(x)=6x−2,(π,π)
a
0
=
π
1
−π
∫
π
f(x)dx=
π
1
−π
∫
π
(6x−2)dx=
π⋅6⋅2
(6x−2)
2
∣
∣
∣
∣
−π
π
=
=
12π
1
⋅((6π−2)
2
−(−6π−2)
2
)=−
π
4π
=−4
a
n
=
π
1
−π
∫
π
f(x)⋅cosnxdx=
π
1
−π
∫
π
(6x−2)cosxnxdx=
=[u=6x−2,du=6dx,dv=cosnx,v=
n
1
sinnx]=
\begin{gathered}=\frac{1}{\pi }\Big (\frac{6x-2}{n}\cdot sin\, nx\Big |_{-\pi }^{\pi }-\frac{6}{n}\int\limits^{\pi }_{-\pi }sin\, nx\, dx\Big )==\frac{1}{\pi }\cdot \Big (0+\frac{6}{n^2}\cdot cos\, nx\Big |_{-\pi }^{\pi }\Big )=\frac{1}{\pi }\cdot \frac{6}{n^2}\cdot \Big (cos\pi n-cos(-\pi n)\Big )=0 \end{gathered}
=
π
1
(
n
6x−2
⋅sinnx
∣
∣
∣
∣
−π
π
−
n
6
−π
∫
π
sinnxdx)=
=
π
1
⋅(0+
n
2
6
⋅cosnx
∣
∣
∣
∣
−π
π
)=
π
1
⋅
n
2
6
⋅(cosπn−cos(−πn))=0
\begin{gathered}b_{n}=\frac{1}{\pi }\int\limits^{\pi }_{-\pi }f(x)sin\, nx\, dx=\frac{1}{\pi }\int\limits^{\pi }_{-\pi }(6x-2)\cdot sin\, nx\, dx==[u=6x-2,\; du=6dx,\; dv=sin\, nxdx,\; v=-\frac{1}{n}cos\, nx]==\frac{1}{\pi }\cdot \Big (-\frac{6x-2}{n}cos\, nx\Big |_{-\pi }^{\pi }+\frac{6}{n}\int\limits^{\pi }_{-\pi }cos\, nx\, dx\Big )==-\frac{1}{\pi n}\cdot \Big ((6\pi -2)\cdot cos\, \pi n-(-6\pi -2)\cdot cos(-\pi n)\Big )++\frac{6}{\pi n^2}\cdot sin\, nx\Big |_{-\pi }^{\pi }==-\frac{1}{\pi n}\cdot \Big ((6\pi -2)\cdot (-1)^{n}+(6\pi +2)\cdot (-1)^{n}\Big )+0=\end{gathered}
b
n
=
π
1
−π
∫
π
f(x)sinnxdx=
π
1
−π
∫
π
(6x−2)⋅sinnxdx=
=[u=6x−2,du=6dx,dv=sinnxdx,v=−
n
1
cosnx]=
=
π
1
⋅(−
n
6x−2
cosnx
∣
∣
∣
∣
−π
π
+
n
6
−π
∫
π
cosnxdx)=
=−
πn
1
⋅((6π−2)⋅cosπn−(−6π−2)⋅cos(−πn))+
+
πn
2
6
⋅sinnx
∣
∣
∣
∣
−π
π
=
=−
πn
1
⋅((6π−2)⋅(−1)
n
+(6π+2)⋅(−1)
n
)+0=
\begin{gathered}= \frac{(-1)^{n}}{\pi n}\cdot (6\pi -2+6\pi +2)=\frac{(-1)^{n}\cdot 12\pi }{\pi n}=\frac{(-1)^{n}\cdot 12}{n}f(x)\sim \frac{a_0}{2}+\sum\limits _{n=1}^{\infty }\Big (a_{n}\cdot cos\, nx+b_{n}\cdot sin\, nx\Big )f(x)=-4+\sum \limits _{n=1}^{\infty }\Big (\frac{(-1)^{n}\cdot 12}{n}\cdot sin\, nx\Big )= -4+12\sum \limits _{n=1}^{\infty }\frac{(-1)^{n}sin\, nx}{n}\end{gathered}
=
πn
(−1)
n
⋅(6π−2+6π+2)=
πn
(−1)
n
⋅12π
=
n
(−1)
n
⋅12
f(x)∼
2
a
0
+
n=1
∑
∞
(a
n
⋅cosnx+b
n
⋅sinnx)
f(x)=−4+
n=1
∑
∞
(
n
(−1)
n
⋅12
⋅sinnx)=−4+12
n=1
∑
∞
n
(−1)
n
sinnx