Разложить следуйщую функцию в ряд маклорена и определить радиус сходимости ряда. y=sin x^2/2.

stecykuliamail stecykuliamail    2   19.06.2019 23:10    1

Ответы
Azazel500 Azazel500  16.07.2020 01:17
Зная разложение в ряд Маклорена  функции у = sin x
sin x=x- \frac{ x^{3} }{3!}+\frac{ x^{5} }{5!}+...+(-1) ^{n-1} \frac{x^{2n-1} }{(2n-1)!}+...

-∞ < x < +∞,  R=∞
Заменим х на (х²/2) получим разложение данной функции
sin \frac{ x^{2} }{2} = \frac{ x^{2} }{2}- \frac{ (\frac{ x^{2} }{2}) ^{3} }{3!}+\frac{ (\frac{ x^{2} }{2}) ^{5} }{5!}+...+(-1) ^{n-1} \frac{ (\frac{ x^{2} }{2}) ^{2n-1} }{(2n-1)!}+...
или
sin \frac{ x^{2} }{2} = \frac{ x^{2} }{2}- \frac{ x^{6} }{8\cdot3!}+\frac{ x^{10} }{32\cdot 5!}+...+(-1) ^{n-1} \frac{ x ^{4n-2} }{2 ^{2n-1} (2n-1)!}+...
 радиус сходимости находим из неравенства
-∞< (x²/2)<∞    ⇒    R=∞
ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Математика